The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites.
نویسندگان
چکیده
Regulation of chromosome inheritance is essential to ensure proper transmission of genetic information. To accomplish accurate genome segregation, cells organize their chromosomes and actively separate them prior to cytokinesis. In Bacillus subtilis the Spo0J protein is required for accurate chromosome segregation and it regulates the developmental switch from vegetative growth to sporulation. Spo0J is a DNA-binding protein that recognizes at least eight identified parS sites located near the origin of replication. As judged by fluorescence microscopy, Spo0J forms discrete foci associated with the oriC region of the chromosome throughout the cell cycle. In an attempt to determine the mechanisms utilized by Spo0J to facilitate productive chromosome segregation, we have investigated the DNA binding activity of Spo0J. In vivo we find Spo0J associates with several kilobases of DNA flanking its specific binding sites (parS) through a parS-dependent nucleation event that promotes lateral spreading of Spo0J along the chromosome. Using purified components we find that Spo0J has the ability to coat non-specific DNA substrates. These 'Spo0J domains' provide large structures near oriC that could potentially demark, organize or localize the origin region of the chromosome.
منابع مشابه
Insights into ParB spreading from the complex structure of Spo0J and parS.
Spo0J (stage 0 sporulation protein J, a member of the ParB superfamily) is an essential component of the ParABS (partition system of ParA, ParB, and parS)-related bacterial chromosome segregation system. ParB (partition protein B) and its regulatory protein, ParA, act cooperatively through parS (partition S) DNA to facilitate chromosome segregation. ParB binds to chromosomal DNA at specific par...
متن کاملStructural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus.
Prokaryotic chromosomes and plasmids encode partitioning systems that are required for DNA segregation at cell division. The plasmid partitioning loci encode two proteins, ParA and ParB, and a cis-acting centromere-like site denoted parS. The chromosomally encoded homologues of ParA and ParB, Soj and Spo0J, play an active role in chromosome segregation during bacterial cell division and sporula...
متن کاملRecruitment of SMC by ParB-parS Organizes the Origin Region and Promotes Efficient Chromosome Segregation
Organization and segregation of replicated chromosomes are essential processes during cell division in all organisms. Similar to eukaryotes, bacteria possess centromere-like DNA sequences (parS) that cluster at the origin of replication and the structural maintenance of chromosomes (SMC) complexes for faithful chromosome segregation. In Bacillus subtilis, parS sites are bound by the partitionin...
متن کاملRecruitment of Condensin to Replication Origin Regions by ParB/SpoOJ Promotes Chromosome Segregation in B. subtilis
Proper segregation of DNA replication products is essential in all cells. In Bacillus subtilis, two protein complexes have been implicated in this process: the ParAB homologs, Soj and Spo0J, and the bacterial Smc/ScpAB complex, also called condensin. Here we demonstrate that Smc is highly enriched in the region around the origin of replication, specifically near parS sites to which Spo0J binds ...
متن کاملCondensation and localization of the partitioning protein ParB on the bacterial chromosome.
The ParABS system mediates chromosome segregation and plasmid partitioning in many bacteria. As part of the partitioning mechanism, ParB proteins form a nucleoprotein complex at parS sites. The biophysical basis underlying ParB-DNA complex formation and localization remains elusive. Specifically, it is unclear whether ParB spreads in 1D along DNA or assembles into a 3D protein-DNA complex. We s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular microbiology
دوره 61 5 شماره
صفحات -
تاریخ انتشار 2006